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Abstract

Dynamic neural network control (DNNC) is a model predictive control strategy potentially applicable to nonlinear systems. It uses a
neural network to model the process and its mathematical inverse to control the process. The advantages of single hidden layer DNNC
are threefold: First, the neural network structure is very simple, having limited nodes in the hidden layer and output layer for the SISO
case. Second, DNNC offers potential for better initialization of weights along with fewer weights and bias terms. Third, the controller
design and implementation are easier than control strategies such as conventional and hybrid neural networks without loss in performance.
The objective of this paper is to present the basic concept of single hidden layer DNNC and illustrate its potential. In addition, this paper
provides a detailed case study in which DNNC is applied to the nonisothermal CSTR with time varying parameters including activation
energy (i.e., deactivation of catalyst) and heat transfer coefficient (i.e., fouling). DNNC is compared with PID control. Although it is clear
that DNNC will perform better than PID, it is useful to compare PID with DNNC to illustrate the extreme range of the nonlinearity of the
process. This paper represents a preliminary effort to design a simplified neural network-based control approach for a class of nonlinear
processes. Therefore, additional work is required for investigation of the effectiveness of this approach for other chemical processes such as
batch reactors. The results show excellent DNNC performance in the region where conventional PID control fails. ©2000 Elsevier Science
S.A. All rights reserved.
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Nomenclature

ai unit step response coefficients, DMC
convolution model coefficients

A area
B1 hidden layer bias
B2 output layer bias
CA concentration of component A
Cp heat capacity
d(k) unmodeled factor or disturbance effects on

the output
E activation energy
f transfer function
h heat transfer coefficient for CSTR
h filter transfer function (time domain), Eq. (42)
1H heat of reaction
k0 rate constant

∗ Corresponding author. Present address: Energy and Geoscience Insti-
tute, University of Utah, Salt Lake City, Utah 84108.

1 Present address: Union Camp Corp., PO Box B, Eastover, SC 29022.

nu number of input nodes correspond to manipulated
input

ny number of input nodes correspond to controlled
output

N number of time intervals needed to describe the
process dynamics andai = aN for i≥N

NN network transfer function (time domain)
q feed flow rate
T temperature
1u(k) change in the input (manipulated variable) defined

asu(k)−u(k−1)
uyuyuy as defined in Eq. (40)
V volume of the tank
W1W1W1 P×M matrix, lower triangular matrix as defined

in Eq. (A.4)
W2 hidden/output layer weight
W2W2W2 vector which include all the elements of the

weights and bias terms, Eqs. (39) and (41)
x,X input to the network (neuron)
y model output
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y`
output from hidden layer nodes

ym output measurement
y* output due to input moves up to the present time
yset setpoint
Greek letters
σ as defined in Eq. (30)
α coefficient ofym(k), as defined in Eqs. (32) and (33)
β as defined in Eq. (30)
γ output weighting parameter
ϕ filter constant as defined in Eqs. (47) and (48)
λ move suppression parameter
ν filter output
θ bias
ρ density of reactor contents
τd time delay
E objective function, Eq. (41)
01 P×P diagonal matrix, tuning parameter
31 M×M diagonal matrix, tuning parameter
Subscripts
1 input layer, hidden layer
2 output layer
c coolant
f feed

1. Introduction

One of the difficulties in analyzing the dynamic response
of industrial processes is the fact that they are nonlinear.
Neural networks offer the ability to generate nonlinear mod-
els for systems which are difficult to model from first prin-
ciples. Neural networks with three layers can approximate
any nonlinear function and generate complex decision re-
gions for input–output mapping [1–2]. This fact suggests
that they hold great promise for modeling very complicated
nonlinear systems and offer a cost-effective solution to con-
trol highly nonlinear processes. To date, the backpropaga-
tion neural network has been applied successfully in many
process modeling and identification applications [3–9]. This
fact suggests that neural networks, in conjunction with suit-
able control strategy such as model-based control [8–12],
state-space and geometric control [13–15], and neuro-fuzzy
control [16] can be used to control nonlinear systems.

In recent process control applications, neural network
models are applied in control strategies in either direct or in-
direct methods. In the direct method, the neural network as
a controller is trained to learn the inverse of the process dy-
namics. Since the process is modeled with a separate neural
network, the controller is not the exact inverse of the pro-
cess model and offset cannot be eliminated. In addition, this
approach does not provide tuning parameters and updating
the process model and controller model must be done sep-
arately. The concept employed in the indirect method is to
train the neural network model of the process to predict fu-
ture outputs from past and present inputs and outputs. In this

approach, the inverse of the model at each sampling time
must be calculated via an optimization routine to calculate
controller outputs. Since the neural network model is fre-
quently complex, calculation of its mathematical inverse is
difficult and time consuming.

During the past few years, several backpropagation neural
network control algorithms have been proposed. Neural net-
works are now widely used in many nonlinear control appli-
cations [3,4,8,11–13,16–18]. Recently, neural networks have
been employed in model predictive control (MPC) [9–11],
internal model control (IMC) [12], dynamic matrix control
(DMC) [8,10,19,20], and Adaptive control [21,22]. The neu-
ral network models which have been proposed for process
control are complex and have several nodes in the input and
hidden layers, as well as a large number of weights and bias
terms. These weights and bias terms are usually initialized
randomly, using no prior process knowledge to reduce net-
work training time.

In this paper, Dynamic neural network control (DNNC) is
presented as a control strategy which uses a neural network
to model the process and then applies the mathematical in-
verse of the process model as the controller. DNNC falls into
the large class of MPC, many of which are now widely used
in industry [10,23]. The DNNC strategy differs from previ-
ous neural network controllers, neural network DMC, and
MPC hybrid controllers because it offers physical meaning
to the parameters.

One of the keys to the design of a reliable control strategy
employing neural network models is to understand the neural
network structure and to establish the relationship between
the process data and neural network parameters (weights
and biases). The network structure of single hidden layer
DNNC is very simple, comprising limited input and hidden
layer nodes and an output layer node for the SISO case. Yet
in the nonlinear cases studied thus far, DNNC performs as
well as, if not better than, more complex neural network con-
trol strategies. DNNC offers potential for fewer weights and
bias terms, therefore, better initialization of weights and fast
on-line updating of weights are possible [18]. In addition,
DNNC provides tuning parameters which are analogous to
those of DMC.

Nonlinear, time varying behavior is common in chemi-
cal processes. When a change in the process parameters oc-
curs, the controller frequently needs to be retuned in order to
maintain satisfactory performance. Retuning the controller
is usually time consuming requiring a combination of oper-
ational experience and trial-and-error. We thus explore the
usefulness of DNNC for control of such systems. In this pa-
per, the performance of DNNC is tested on a process with
severe nonlinearities. We apply DNNC to a nonisothermal
CSTR with time varying activation energy (i.e., deactiva-
tion of catalyst) and heat transfer coefficient (i.e., fouling).
The CSTR was chosen for this case study because the dy-
namic behavior of the CSTR has been studied extensively
and it is well known to exhibit strong parametric sensivity
[12,14,18,24,25]. More importantly, the CSTR model has
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become one of the standard test applications for theoretical
results in the area of nonlinear control [12,14,24–26].

The objective of this paper is to present the basic concept
of DNNC. The structure of the paper will be as follows. First,
a brief overview of neural networks trained with the back-
propagation algorithm will be given. Next, the DNNC model
will be developed and the relationship between DNNC and
DMC will be presented. Then, DNNC will be applied to an
exothermic CSTR with constant parameters and its perfor-
mance will be compared to PID control strategies. Finally,
DNNC will be applied to the CSTR with time varying para-
metric behavior. Its performance will be demonstrated via
computer simulation and will be compared to traditional PID
control.

2. The backpropagation neural network

Details of the backpropagation neural network are avail-
able in the literature [1,2]. Therefore, only the important
characteristics of the network will be mentioned here. The
typical backpropagation neural network has an input layer,
an output layer, and at least one hidden layer. Each layer
is fully connected to the succeeding layer with correspond-
ing weights. In a neural network, the nonlinear elements are
called nodes, neurons, or processing elements.

Consider a single neuron with a transfer function(y
(i)
1 =

f (z(i))), connection weights,wj , and node threshold,θ . For
each pattern I,

Z(i) = X
(i)
1 W1+X

(i)
2 W2+ · · · +X

(i)
N WN + θ

for i = 1, . . . , P . (1)

All patterns may be represented in matrix notation as,




z(1)

z(2)

...

z(P )


 =




x
(1)
1 x

(1)
2 · · · x

(1)
N 1

x
(2)
1 x

(2)
2 · · · x

(2)
N 1

...
...

...
...

...

x
(P )
1 x

(P )
2 · · · x

(P )
N 1







w1
w2
...

wN

θ


 (2)

and

yyy1 = F(zzz). (3)

In more compact notation,

zzz = XXX1wwwθ = XwXwXw + θθθ, (4)

where

wwwθ = [wwwT|θ ]T, (5)

XXX1 = [XXX|111] (6)

and
lll column vector of ones withP rows,
XXX P×N matrix with N input andP patterns,
θθθ bias vector, vector withP rows ofθ ,
www weights, vector withN rows.

During learning, the information is propagated back
through the network and used to update the connection
weights. The objective function for the training algorithm
is usually set up as a squared error sum,

E = 1

2

P∑
i=1

(y
(i)
(observed) − y

(i)
(prediction))

2. (7)

This objective function defines the error for the observed
value at the output layer which is propagated back through
the network. During training, the weights are adjusted to
minimize this sum of squared errors.

3. Dynamic neural network control strategy (DNNC),
basic concept

This section develops the DNNC algorithm. Because
DNNC is analogous to DMC, a brief explanation of the
basic DMC algorithm is provided so that the similarities
between DMC and DNNC can be established and so that
notation is clear. Then the equations for single hidden layer
DNNC will be developed. Finally the training procedure
for DNNC will be presented.

3.1. DMC model prediction: (linear input–output model)

The DMC algorithm is well-established and discussed
throughout the literature [26–28]. Consider a linear dynamic
single-input/single-output system. A discrete representation
of the process dynamics with a step-response model is given
by

y(k + j) =
j∑

i=1

ai 1u(k− i + j)+ y∗(k + j)+ d(k + j),

(8)

where

y∗(k + j) = y0(k + j)+
N∑

i=j+1

ai1u(k + j − i), (9)

y0(k + j) = aNu(k −N + j − 1), (10)

d(k) = ym(k)− y(k). (11)

and
k discrete time,
y(k) model output,
1u(k) change in the input (manipulated variable)

defined asu(k)−u(k−1),
d(k) unmodeled disturbance effects on the output,
ai unit step response coefficients,
N number of time intervals needed to

describe the process dynamics (note:ai = aN

for i≥N),
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ym(k) current feedback measurement,
y*(k+ j) predicted output atk+ j due to input moves

up tok.
In the absence of any additional information, it is assumed

that

d(k + j) = d(k). (12)

For N manipulated variables considered during the time
interval of k−N to k+ N, the equation for DMC may be
represented as,




1y(k + 1)

1y(k + 2)

1y(k + 3)
...

1y(k +N)
...

1y(K + P)



=




1u(k) 1u(k − 1) 1u(k − 2) · · · 1u(k −N + 1) · · · 0
1u(k + 1) 1u(k) 1u(k − 1) · · · 1u(k −N + 2) · · · 0
1u(k + 2) 1u(k + 1) 1u(k) · · · 1u(k −N + 3) · · · 0
...

...
...

...
...

...
...

1u(k +N − 1) 1u(k +N − 2) 1u(k +N − 3) · · · 1u(k) · · · 0
...

...
...

...
...

...
...

0 0 0 · · · 1u(k + P −N) · · · 1u(k − 1)

1
1
1
...

1
...

1




×




a1
a2
a3
...

aN

...

aP+1
d(k)




, (13)

where

1y(k + j) = y(k + j)− y0(k + j).

In matrix notation,

1yyy = 1U1U1U1aaad (14)

Comparing Eq. (14) for DMC with Eq. (4) for the neural
network, we see that the following analogy may be drawn:

1yyy = zzz, 1UUU1 = XXX1, wwwθ = aaad. (15)

3.2. DMC controller design

The DMC model equation is defined by Eq. (8). By re-
placing y with the desired value,yset and rearranging, the
DMC equation becomes,


yset− y∗(k + 1)− d(k)
...

yset− y∗(k + P)− d(k)


=eee (k + 1)=AAA 1uuu (k), (16)

where

AAA =




a1 0 0 · · · 0
a2 a1 0 · · · 0
...

...
...

...
...

aN aN−1 aN−2 · · · aN−M+1
...

...
...

...
...

aP aP−1 aP−2 · · · aP−M+1




, (17)

andeee(k+ 1) is aP dimensional vector of predicted deviations
from the setpoint.

The following objective function is used to find theM
future controller moves1u(k), . . . , 1u(k+ M−1),

Min
1u

{[
P∑

i=1

γ 2[yset(k + i)− y(k + i)]2
]

+

 M∑

j=1

λ2[1u(k +M − j)]2




 . (18)

The solution of such least-squares problems is given by,

1uuu(k)=
[
AAATΓΓΓ TΓΓΓ AAA+ΛΛΛTΛΛΛ

]−1

×AAATΓΓΓ TΓΓΓ [eee (k + 1)] , (19)

where

ΛΛΛ = diag

(
λ λ · · · λ
|←M→|

)
(20)

λ = move suppression parameter,

ΓΓΓ = diag

(
γ γ · · · γ
|←P→|

)
(21)

γ = output weighting parameter.
By analogy, if the neural network is comprised of only a

single neuron with a linear transfer function, then the con-
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troller would be given by

xxx =
[[

WWWTΓΓΓ TΓΓΓ WWW +ΛΛΛTΛΛΛ
]−1

WWWT ΓΓΓ TΓΓΓ [zzz]

]
, (22)

where

WWW =




w1 0 0 · · · 0
w2 w1 0 · · · 0
...

...
...

...
...

wN wN−1 wN−2 · · · wN−M+1
...

...
...

...
...

wP wP−1 wP−2 · · · wP−M+1




(23)

xxx ≡ 1uuu, zzz ≡ eee (k + 1). (24)

3.3. The DNNC process model

For a single future move in Eq. (8) we have,

1uuu = [1u(k) 0 . . . 0]T.

Therefore,

y(k + 1) = y∗(k + 1)+ a11u(k)+ d(k + 1). (25)

For the nonlinear case,a1 is a function of1u(k) and the sys-
tem state, therefore, we can generalize Eq. (25) as follows,

y(k + 1) = y∗(k + 1)+ a1(k)1u(k)+ d(k + 1) (26)

or equivalently,

e(k + 1) = a1(k)1u(k). (27)

Solving Eq. (26) for one future move (j = 1), and substi-
tuting for y*(k+ 1) from Eqs. (9) and (10),

y(k + 1)= a1(k) ·1u(k)+ a2(k) ·1u(k − 1)+ a3(k)

·1u(k − 2)+ · · · + aN(k)

·1u(k + 1−N)+ aN(k) · u(k −N)+ d(k + 1)

(28)

with d(k+ 1) is defined as follows:

d(k + 1) = ym(k + 1)− y(k + 1) (29)

and in terms ofym(k) andy(k),

d(k + 1) = σ(k)ym(k)− β(k)y(k), (30)

whereσ (k) andβ(k) are time varying parameters. Substitut-
ing for y(k) from Eq. (11) into Eq. (30) gives,

d(k + 1) = [σ(k)− β(k)] ym(k)+ β(k)d(k). (31)

Eq. (30) clearly shows thatd(k+ 1) is a function of
ym(k), d(k), and the parametersβ(k) and σ (k). Define
α(k) =σ (k)−β(k) so Eq. (31) may be written as

d(k + 1) = α(k)ym(k)+ β(k)d(k). (32)

It is noted that by takingα(k) = 0 andβ(k) = 1, Eq. (32)
reduces to Eq. (11) for DMC andd(k+ 1) is dependent only
on d(k).

Substituting Eq. (32) into Eq. (28) and simplifying one
obtains,

y(k + 1)= a1(k) ·1u(k)+ a2(k) ·1u(k − 1)+ a3(k)

·1u(k − 2)+ · · · + aN−1(k)1u(k −N + 2)

+aN(k) · u(k−N+1)+ α(k)ym(k)+ β(k)d(k)

= aaa(k)T1uyuyuy(k)+ β(k)d(k), (33)

where

1uyuyuy(k)= [1u(k) 1u(k − 1) · · · 1u(k −N + 2)

×u(k −N + 1) ym(k)]T, aaa(k) = [a1(k)

×a2(k) ... aN−1(k) aN(k)

×aN+1(k)]T aN+1(k) = α(k). (34)

Eq. (33) shows thaty(k+ 1) is a function of the independent
variables1uyuyuy(k) and the time varying parametersa(k). (We
will assume that in the training datad(k) = 0.) In a more
general form,y(k+ 1) is given by,

y(k + 1) = g(1uyuyuy(k),aaa(k)). (35)

In this study, we use a neural network model for nonlin-
ear input/output mapping given by Eq. (35) with the input
structure of the network as defined by Eq. (33). In general,
for nonlinear processes the single hidden layer DNNC pro-
cess model is defined by,

y(k + 1) = w2f (wwwT
11uyuyuy + B1)+ B2,

1uyuyuy = [1u(k) 1u(k − 1) · · · 1u(k −N + 2)

u(k −N + 1) ym(k)]T, www1 = [w11 w12 ...

w1N−1 w1N w1N+1]T (36)

with the transfer function f typically defined by the hyper-
bolic tangent function,

f (z) = exp(z)− exp(−z)

exp(z)+ exp(−z)
. (37)

It is important to note that there is no restriction on the
number of hidden layers or the transfer function in the output
and hidden layers.

3.3.1. Training the DNNC model
With the initial guess for the network weights and biases,

www1 = [aaaT|α]T, w2 = 1, B1 = B2 = 0,

w1,(N+1) = α = ε, (38)

where

ε ∼= 0.0, (e.g. ε = 0.001).

The DNNC model is trained with input/output data using
the backpropagation algorithm. In applications, the weights
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and bias terms would be updated either using the back-
propagation algorithm or a recursive algorithm if necessary
[18,26]. It has been shown [18,26] that DNNC offers poten-
tial for fewer weights and bias terms, therefore, better ini-
tialization of weights and fast on-line updating of weights
are possible [18].

3.4. DNNC controller design

Before discussing the DNNC controller, we present a
brief summary of current work with neural network con-
trollers. This discussion will help to illustrate the advan-
tages of DNNC. Neural networks can be used as a controller
in either direct or indirect methods as discussed in the in-
troduction. In the direct approach, the controller will be a
neural network which represents the inverse of the process
model, while in the indirect approach the controller algo-
rithm inverts the neural network process model. In the di-
rect approach, since the controller model is trained off line,
the error in the controller prediction significantly affects the
controller performance. This problem was addressed by Psi-
chogios and Ungar [9]. In the indirect approach, the inverse
of the process model at each sampling time must be calcu-
lated. Since the neural network model of the process is a
nonlinear mapping between input and output, and the model
is frequently complex, mathematical inversion of the pro-
cess model is difficult. Therefore, the most popular method
applies an optimization routine to find the controller output.
To illustrate the complexity, we will outline the optimization
approach.

The neural network process model for input/output map-
ping is defined as,

y(k + 1) = NN(uyuyuy(k), WΘWΘWΘ(k)), (39)

whereuyuyuy(k) includes all the inputs to the network model at
time (k);

uyuyuy(k)T = [y(k), y(k − 1), ..., y(k − ny + 1), u(k), u(k − 1),

. . . , u(k − nu + 1)], (40)

and W2W2W2(k) includes all the weights and bias terms. The
objective function (OF) for controller design is given by,

OF=E(k)2 = [E(ν(k),uyuyuy(k),WΘWΘWΘ(k))]2

= [v(k)− NN(uyuyuy(k),WΘWΘWΘ(k))]2 , (41)

wherev(k) is a filtered output given by,

ν(k) = h(d(k), yset(k), ν(k − 1)). (42)

In the optimization routine,u(k) is calculated to mini-
mize the objective function defined in Eq. (41). The back-
propagation algorithm may be used, in which case the er-
ror back-propagates through the network to adjust theu(k)
instead of adjusting the weights and bias terms as is done
during training. Other methods such as quadratic program-
ming also may be applied. Solving the optimization problem

for conventional neural network models, which are complex
and consist of several nodes and weights, is difficult and
time consuming. In addition, there is approximation error
in calculatingu(k). Often, this error inu(k) significantly af-
fects the controller performance. Psichogios and Ungar [9]
suggest “detuning” the controller for robust performance.

Another approach to find the controller output based on
the process model employs Newton’s method. Several au-
thors have employed this technique [9,12]. The following
equations are used in this method at each iterationj,

u(k)[j ] = u(k)[j−1] − E(k)[j−1]

∂E(k)[j−1]/∂u(k)[j−1]
(43)

with the initial guess foru(k) as follows:

u(k)[0] = u(k − 1). (44)

Details of the calculation of the Jacobian ofE(k);[
∂E(k)[j−1]/∂u(k)[j−1]

]
have been presented by Nikravesh

et al. [18]. Once again there is approximation error inu(k)
and “detuning” is required. In addition, solving this nonlin-
ear problem by Newton’s method is not trivial. Psichogios
and Ungar [9] considered some problems associated with
convergence of Newton’s method. In their work, consider-
ation was given to problems including poor initial guesses,
pathological functions, and singular problems with vanish-
ing derivatives.

Since the DNNC model is very simple, its inversion does
not present the difficulties encountered with other methods.
The inverse of the process model is exact so, convergence
and offset do not present problems. In this paper, we present
the DNNC controller in an IMC framework (one step ahead
prediction). The neural network IMC models are restricted
to systems with stable open-loop response. However, DNNC
can be employed in a more general model predictive con-
trol (MPC) framework (multi-step prediction). For example,
DNNC can be employed in the DMC framework. Details of
such a DNNC controller are given by Appendix A.

Fig. 1 shows the block diagram for the IMC framework.
The IMC version of the DNNC controller model will be
designed using the following equations:

1u(k)=
[
f−1

(
ν(k)−B2

w2

)
− B1− (wwwN

1 )T1uyuyuyN
1

]
w11

,

wwwN
1 = [w12 w13 ... w1N w1N+1]T, 1uyuyuyN

1

= [1u(k − 1) 1u(k − 2) ... 1u(k −N + 2)

×1u(k −N + 1) ym(k)], (45)

wheren(k) is a filtered output fory(k+ 1). For the controller
design,y(k+ 1) =yset(k+ 1). The transfer functionf−1 is the
inverse of Eq. (37),

f−1(z) = −0.5 ln

[
1− (z)

1+ (z)

]
. (46)

The filter may be chosen to be a pulse transfer function in
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Fig. 1. Block diagram of simplified neural network IMC structure.

the form of a first-order filter. The filter equation is given by,

ν(k) = v(k − 1)+ (1− ϕ)
[
yset(k)− d(k)− y(k)

]
. (47)

In training the network via the backpropagation al-
gorithm, an appropriate scaling of inputs andy(k+ 1)
will be used so that,−1< y(k+ 1)< +1. In this case,
(y(k + 1)− B2)/w2 is always bounded between−1 and 1.
It is also possible to scale the inputs andy(k+ 1) such that,
−1< (ν(k) − B2)/w2 < +1, is guaranteed. Therefore, the
existence off−1((ν(k)− B2)/w2) is guaranteed.

For time delay compensation, the following equation may
be used,

ν(k)= ϕν(k − 1)+ (1− ϕ)
[
yset(k)− d(k)− y(k)

+ν(k − τd − 1)] . (48)

The value forϕ is bounded between zero and one. De-
tails of filter design are available throughout the literature
[12,29–31]. In case of process/model mismatch, the filter
may be used to ensure stability and robustness, but it can
also compensate for certain types of disturbances. Garcia
and Morari [32] and Deshpande [33,34] provide detailed
guidelines for designing IMC filters.

3.5. Stability analysis of neural network-based control
systems

The stability analysis of neural-based control systems is an
important issue which must be considered for the design of a
good neural-based control system [26,35]. There are several
methods which has been proposed to study the open-loop
and closed-loop stability of processes and to analyze and
design control systems [36]. State-space methods are best

suited for analysis and synthesis of nonlinear systems and
they can be applied to the design of optimal control sys-
tems [36]. Once the systems are transformed into state-space
models, nonlinear model approaches such as geometric con-
trol [13–15], neuro-fuzzy control [16,17], fuzzy logic con-
trol [37], and model-based control [8–13,19–22] can be used
to design and analysis the controller performance. In addi-
tion, the Liapunov theory [36,38] can be used for stability
analysis [4,26,35,39,40]. Liapunov stability theory plays an
important role in the stability analysis of control systems
described by state-space equations. The second method of
Liapunov[35,36,38] is most commonly used and is appli-
cable to both linear and nonlinear systems. This method is
also suited for the stability of nonlinear systems for which
exact solutions may be unobtainable such as neural network
models. Although the second method of Liapunov is appli-
cable to a wide class of nonlinear systems including neural
network systems for stability analysis, obtaining success-
ful results is not trivial [36]. Therefore, experience may be
necessary to correctly interpret the results from the stability
analysis of nonlinear systems.

3.5.1. Dynamic neural network control (DNNC);
state-space representation of DNNC and stability analysis

The DNNC can be written in the following discrete
state-space form,

xxx(k + 1) = f (xxx(k))+ g(xxx(k), u(k)),

y(k) = h
(
z−1 (xxx(k), u(k))

)
,

y(k + 1) = h(xxx(k), u(k)) (49)

with xxx(k+ 1) is given by,

xxx(k + 1)=[u(k) x1(k) . . . xN−2(k) h(xxx(k), u(k))]T (50)
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and

f (xxx(k)) = [0 x1(k) x2(k) . . . xN−2(k) 0]T,

g(xxx(k), u(k)) = [u(k) 0 0 . . . 0 0 h(xxx(k), u(k))]T,

h(xxx(k), u(k)) = y(k + 1) = w2 Γ (1wwwT
1uyuyuy + B1)+ B2.

(51)

In this study, we are interested in the stability of the overall
process. In the DNNC strategy (as for any other IMC strategy
(Fig. 1)) and with an exact model for the process, the stability
of both the process and controller is sufficient for overall
system stability. Nikravesh et al. [41] and Hernandez and
Arkun [42] provide detailed guidelines for stability of neural
networks.

4. Extension of the DNNC model to the MIMO case

For a MIMO system it is much more difficult to make
meaningful specifications than for a SIOS systems. However,
the design of multi-variable controllers in the DNNC control
strategy is straightforward. The DNNC weights represent
the process model and interaction between input/output and
it is possible to determine the severity of the interaction
by interpreting the network weights. The following sections
will demonstrate the design of MIMO systems in the DNNC
framework.

4.1. Extension of the DNNC model to the MIMO case in
IMC framework

Design of multi-variable controllers in the DNNC control
strategy in IMC framework is straightforward. The following
equations will be used for process model:

yyy(k + 1) = www2F(WWW1uyuyuy(k)+BBB1)+BBB2,uyuyuy

= [1uyuyuy(1)(k) 1uyuyuy(2)(k) . . . 1uuu(j)(k)]T,

1uyuyuy(j) = [1uuuj (k) 1uuuj (k) . . . uuuj (k −Ni + 1)

y
j
m(k)]T,yyy(k + 1) = [y(1)(k + 1)

y(2)(k + 1) . . . y(j)(k + 1)]T (52)

with,

WWW1=




www1,1 www1,2 · · · www1,j

www2,1 www2,2 · · · ...
...

...
...

...

wwwj,1 wwwj,2 · · · wwwj,j


 ,

wwwi,j = [wi,1 wi,2 . . . wi,Nj
wi,Nj+1]T, (53)

where,wwwi,j represents the effect of inputi on the outputj.
Therefore, the DNNC controller will be designed using the
inverse of the DNNC process model as was presented in the
previous chapters for SISO case. For no interaction between
outputs, all the elements of matrixWWW1 which are not on

Fig. 2. Nonisothermal CSTR.

the main diagonal will be equal to zero. In other words, if
after training the MIMO–DNNC model, all the off diagonal
elements ofWWW1 are equal to zero or a small value compared
to the elements on the main diagonal, then the controller
will be designed as a multi-SISO controller model.

4.2. Extension of the DNNC model to the MIMO case in
DMC framework

The MIMO problem formulation and equations for DNNC
are the same as in the DMC case. In other words there is
no difference between the form of DNNC equations and
that for the DMC case, and only a change in interpreta-
tion of the variables is needed. Therefore, all properties
and techniques applied to MIMO–DMC are applicable to
DNNC as well. Therefore, if the DNNC controller is imple-
mented in the DMC configuration (Appendix A as shown for
SISO case), extension of SISO–DNNC to MIMO–DNNC
will be straightforward and does not cause any problems
(Appendix B).

5. Simulation studies

In this section, first DNNC will be applied to a nonisother-
mal CSTR with constant parameters and its performance
will be compared to PID control. Next, DNNC will be ap-
plied to an exothermic CSTR with time varying parameters
including activation energy and heat transfer coefficient. Its
performance will be compared to traditional PID control.
The examples illustrate improvement of DNNC over PID
control.

The performance of the DNNC strategy was tested on a
nonisothermal CSTR with irreversible reaction (A→B) (Fig.
2). The process model consists of two nonlinear ordinary
differential equations and is given by [26]

dCA

dt
= q

V
(CAf − CA)− k0CAexp(− E

RT
)φc(t), (54)

dT

dt
= q

V
(Tf − T )+ (−1H)k0CA

ρCp

exp(− E

RT
)φc(t)

+ ρcCpc

ρCpV
qc

[
1−exp

(
− hA

qcρCpc
φh(t)

)]
×(Tcf−T ), (55)



M. Nikravesh et al. / Chemical Engineering Journal 76 (2000) 1–16 9

Table 1
Nominal CSTR operating condition and PID parameters

q= 100 l min−1 E/R= 9.95×103 K
CAf = 1 mol l−1 −1H = 2×105 cal mol−1

Tf = 350 K ρ,ρc = 1000 g l−1

Tcf = 350 K Cp ,Cpc = 1 cal g−1 K−1

V= 100 l qc = 103.41 l min−1

hA= 7×105 cal min−1 K−1 T= 440.2 K
k0 = 7.2×1010 min−1 CA = 8.36×10−2 mol l−1

Kc = 190.1 l2/mol−1, τ I = 0.556 min−1, τD = 0.827 min

where
φh(t) fouling coefficient,
φc(t) deactivation coefficient,
CA effluent concentration, the controlled variable,
qc coolant flow rate, the manipulated variable,
q feed flow rate, disturbance,
CAf feed concentration,
Tf feed temperatures,
Tcf coolant inlet temperature.

The remaining model parameters and operating conditions
are presented in Table 1.

5.1. Control of nonisothermal CSTR with constant
parameters:(φh(t) = 1,φc(t) = 1)

The open-loop step responses for a series of step changes
in qc is shown in Fig. 3. It is seen that the process is highly
nonlinear. The DNNC process model has 16 input nodes
(inputs include: current value ofCA, current and 15 previ-
ous values ofqc; scaled uniformly between 0 and 1), one
node in the hidden layer with a nonlinear hyperbolic tangent
transfer function, and one node in the output layer (output
predictions into the future,CA; scaled uniformly between
0 and 1). The model is trained via backpropagation algo-
rithm with data generated with random changes in theqc. In
the DNNC control strategy, Eq. (45) is used to find the ma-
nipulated input at each sampling time. The model predicts

Fig. 3. Open-loop response of the CSTR for step changes in the coolant
flow rate qc.

the controlled output. We note that the DNNC structure is
very simple and has small number of nodes (total number
of weights and bias terms = 20).

To illustrate the performance of the DNNC strategy,
DNNC and PID are applied to control the CSTR process.
DNNC was tuned with a filter constant value ofϕ = 0.95.
PID tuning parameters for this case study are given in Table
1. In Fig. 4, the setpoint tracking behaviors of DNNC and
PID are compared. For setpoint changes, DNNC shows a
faster response toward the setpoint than the PID control
strategies. Fig. 5 shows the disturbance rejection perfor-
mance of DNNC and PID controller strategies. For 20%
change in inlet flow rate as disturbance, DNNC exhibits a
faster response toward setpoint when compared to PID. In
comparison to the PID, DNNC shows excellent performance
with much faster response time toward the setpoint.

5.2. Control of the nonisothermal CSTR with time varying
parameters

In this section, the previously developed DNNC and PID
control strategies (Section 5.1) will be applied to the non-
isothermal CSTR with time varying parameters. Two case
studies will be examined in which the CSTR exhibits severe
nonlinearities. In the first case study, the effect of fouling
on the performance of DNNC and PID controller strategy
will be demonstrated. In the second case study, the effect of
activation energy will be presented.

5.2.1. Case study 1: time varying heat transfer coefficient
Fouling occurs when a material is deposited on a heat

transfer surface during the period of process operation. In
practice, it is common for heat transfer surfaces to become
contaminated with deposits and this causes additional resis-
tance to the flow of heat. There are two common behav-
iors in the development of a fouling film over a period of
time [43]. One is the so-called asymptotic fouling. In this
case, the resistance to heat transfer increases very quickly
in the beginning of the operation and becomes asymptotic
to a steady state value at the end. The other is the so-called
linear fouling, where the fouling resistance increases lin-
early during the entire process operation. In this study, we
assume that the fouling film develops linearly over the en-
tire period of process operation. Therefore, the heat transfer
coefficienth defined in Eq. (55) is replaced byhd and is
given by

hd = φh(t)h = (1− αht)h, (56)

where
t time,
h heat transfer coefficient, cleaned,
hd heat transfer coefficient, scaled,
φh(t) fouling coefficient, 0< φh < 1,
ah fouling constant.
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Fig. 4. Setpoint tracking performance for CSTR.

Fig. 5. Distance rejection performance for +20% change in the feed flow rate of the CSTR.

The open-loop step responses for a series of step changes
in qc is shown in Fig. 6. Fig. 7 shows the comparison be-
tween open-loop response of the CSTR with time varying
heat transfer coefficient and CSTR with constant parameter
for +5% step changes in the coolant flow rate,qc. Figs. 6
and 7 show that the process does not have steady state con-
dition and the process is nonstationary. Figs. 8 and 9 show
that the setpoint tracking and disturbance rejection perfor-
mance of DNNC and PID are only slightly affected by the
time varying behavior of the heat transfer coefficient. DNNC
exhibits faster response time toward setpoint than PID for
both setpoint tracking and disturbance rejection and is able
to control the process effectively.

5.2.2. Case study 2: time varying activation energy
The temperature dependence of the rate expression is usu-

ally represented by the rate constant through the Arrhenius
equation;

k = k0exp

(
− E

RT

)
, (57)

where
k0 frequency factor,
E activation energy,
R gas constant,
T absolute temperature.
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Fig. 6. Open-loop response of the CSTR with time varying heat transfer
coefficient for step changes in the coolant flow rate,qc; [Effect of fouling
φh(t) = (1−αht) with αh = 0.01].

Fig. 7. Comparison between open-loop response of the CSTR with time
varying heat transfer coefficient and CSTR with constant parameter for
+5% step change in the coolant flow rate,qc.

Although the activation energy is not affected by temper-
ature in the moderate temperature range, some exceptions
have been reported [44]. Other factors known to influence
the activation energy include pressure (gas phase reactions)
and the presence of a catalyst [43,44]. In the presence of a
catalyst, an important factor which affects the rate of reac-
tion is the deactivation of the catalyst by poisoning. Obvi-
ously, there is no exact theoretical expression for the deac-
tivation process. However, some empirical expressions has
been reported. In this case study, the general equation fork
is given by,

k = k0exp

(
− E

RT

)
φc(t). (58)

Table 2 shows some functions which have been proposed for
φc (t) [44]. Here we will consider the first functional form

Table 2
Empirical deactivation functions

φc = 1−αt
φc = exp(−αt)
φc = 1/1 +αt
φc = αt−0.5

φc = (1 +αt)−p

from Table 2 forφc(t) and is given by,

φc(t) = exp(−αt). (59)

Catalyst deactivation.The open-loop step responses for
a series of step changes inqc is shown in Figs. 10 and 11
shows the comparison between open-loop response of the
CSTR catalyst deactivation and CSTR with constant param-
eter for +5% step changes in the coolant flow rate,qc. Figs.
10 and 11 show that the process does not have steady state
condition and the process is nonstationary. Figs. 12 and 13
show the setpoint tracking and disturbance rejection perfor-
mance of DNNC and PID. Comparing Fig. 4 with Figs. 12
and 14, one can see that the performance of PID is seriously
affected due to these changes. PID shows a very large offset
and very slow response with extremely poor performance.
While the PID control strategy fails to control the process,
DNNC shows good performance. Modification of the PID
strategy to get better performance is not trivial. However,
fine tuning the DNNC controller is very easy and straightfor-
ward. For open-loop stable processes, a filter is introduced
into the DNNC structure in order to ensure stability [26]. In
addition, the stability of DNNC is improved by increasing
the number of nodes at the input layer (more manipulated
inputs) [26]. In the presence of model inaccuracies, the ro-
bustness of DNNC is improved by introducing a first order
exponential filter. The value ofϕ (filter constant in Eq. (47))
is bounded between zero and one. Details of filter design
are available throughout the literature [12,26,29–31]. Fig. 14
shows the setpoint tracking performance of DNNC with dif-
ferent filter constantϕ. Increasingϕ will result in the slower
but smoother response. Decreasingϕ will result in a faster
response but with more oscillation.

Catalyst regeneration. Fig. 15 shows the open-loop step
responses for a series of step changes inqc. Fig. 15 shows
that the process does not have steady state condition and
the process is nonstationary. In addition, comparing Figs.
10 and 15, one can see that the behavior of the process in
the positive and negative direction are quite different. Figs.
16 and 17 show the setpoint tracking and disturbance re-
jection performance of DNNC and PID. Comparing Fig. 4
with Figs. 16 and 17, one can see that the performance of
PID is seriously affected due to these changes. PID shows
unstable response with extremely poor performance and di-
verging from the setpoint. While the PID control strategy
fails to control the process, DNNC controls the process but
with large offset due to continuous change in the process
parameters. Fine tuning the DNNC controller is very easy
and straightforward and discussed earlier.
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Fig. 8. Setpoint tracking performance of DNNC and PID for CSTR with time varying heat transfer coefficient, [Effect of foulingφh(t) = (1−αht) with
αh = 0.01].

Fig. 9. Disturbance rejection performance of DNNC and PID for +20%
change in the feed flow rate of the CSTR with time varying heat transfer
coefficient, [Effect of foulingφh(t) = (1−αht) with αh = 0.01].

Fig. 10. Open-loop response of the CSTR with catalyst deactivation for
step changes in the coolant flow rate,qc; [Effect of catalyst deactivation
φh(t) = (1−αht) with αh = 0.01].

Fig. 11. Comparison between open-loop response of the CSTR with
catalyst deactivation and CSTR with constant parameter for +5% step
change in the coolant flow rate,qc.

Fig. 12. Setpoint tracking performance of DNNC and PID for CSTR with
catalyst deactivation, Effect of catalyst deactivationφc(t) = exp(−αct) with
αc = 0.0067. (E/RT).
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Fig. 13. Disturbance rejection performance of DNNC and PID for +20%
change in the feed flow rate of the CSTR with catalyst deactivation, [Effect
of catalyst deactivationφc(t) = exp(−αct) with αc = 0.0067. (E/RT)].

Fig. 14. Setpoint tracking performance of DNNC, Effect of filter constant
ϕ .

Fig. 15. Open-loop response of the CSTR with catalyst regeneration for
step changes in the coolant flow rate,qc, [Effect of catalyst regeneration
φc(t) = exp(−αct) with αc =−0.0067. (E/RT).

Fig. 16. Setpoint tracking performance of DNNC and PID for CSTR with
catalyst regeneration, Effect of catalyst regenerationφc(t) = exp(−αct)
with αc = 0.0067. (E/RT).

Fig. 17. Disturbance rejection performance of DNNC and PID for 20%
change in the feed flow rate of the CSTR with catalyst regeneration, Effect
of catalyst regenerationφc(t) = exp(−αct) with αc =−0.0067. (E/RT).

6. Conclusions

This paper provides a detailed case study in which DNNC
is applied to the nonisothermal CSTR with time varying
parameters including activation energy (i.e., deactivation of
catalyst) and heat transfer coefficient (i.e., fouling). DNNC is
compared with PID control. Although it is clear that DNNC
will perform better than PID, we note that the PID controller
performance showed the extreme range of the nonlinearity
of the process. This paper represents a preliminary effort to
design a simplified neural network-based control approach
for a class of nonlinear processes. Therefore, additional work
is required for investigation of the effectiveness of this ap-
proach for other chemical processes such as batch reactors.

The DNNC strategy differs from previous neural network
controllers because the network structure is very simple,
having limited nodes in the input and hidden layers. As a
result of its simplicity, the DNNC design and implemen-
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tation are easier than other control strategies such as con-
ventional and hybrid neural networks. In addition to offer-
ing a better initialization of network weights, the inverse
of the process is exact and does not involve approximation
error. DNNC’s ability to model nonlinear process behavior
does not appear to suffer as a result of its simplicity. This
was demonstrated by controlling the nonlinear nonisother-
mal CSTR with time varying parameters. For the nonlinear,
time varying case, the performance of DNNC was compared
to the PID control strategy. In comparison with PID con-
trol, DNNC showed significant improvement with faster re-
sponse time toward the setpoint for the servo problem. The
DNNC strategy is also able to reject unmodeled disturbances
more effectively. DNNC showed excellent performance in
controlling the exothermic CSTR in the region where the
PID controller failed. It has been shown that the DNNC con-
troller strategy is robust enough to perform well over a wide
range of operating conditions.

Appendix A. DNNC Controller design in DMC
framework

The DNNC model in IMC framework predicts one fu-
ture output at each sampling time. For predicting outputs
more than one time step in the future, the iteration through
the neural network would be required. The predicted out-
put from the neural network can be used at sampling time
k+ 1 as input to the neural network at sampling timek. The
manipulated inputs1u must be shifted accordingly. Simi-
lar iteration to obtain future prediction is also proposed by
Saint-Donat et al. [11]. In this case the controller model is
given by the following equations,

1uuu= [[W1W1W1T Γ 1T Γ 1W1W1W1+Λ1T Λ1]−1W1W1W1TΓ 1T Γ 1

G(eee)], (A.1)

where

G(eee)= F−1
[
eee − B2111p

W2

]

−B1 111p − yyy∗NN (k + 1)− α y
pred
m (k) (A.2)

eee = yset(k + 1)− ddd (k) (A.3)

with each element of transfer function,F−1, defined by
Eq. (46)

W1W1W1=




w1,1 0 0 · · · 0
w1,2 w1,1 0 · · · 0
...

...
...

...
...

w1,M w1,M−1 w1,N−2 · · · w1,1
...

...
...

...
...

w1,P w1,P−1 w1,P−2
... w1,P−M+1




(A.4)

and

yyy∗NN(k + 1)

=




∑N−1
j=2 w1,j1u(k − j + 1)+ w1,Nu(k −N + 1)∑N−1
j=3 w1,j1u(k − j + 2)+ w1,Nu(k −N + 2)

...∑N−1
j=P+1w1,j1u(k − j + P)+ w1,Nu(k −N + P)




(A.5)

1uuu(k) M×1 vector of controller output, change in
the input (manipulated variable) defined as
u(k)−u(k−1),

M number of manipulated moves into the future,
P prediction into the future,
N number of time intervals needed to describe

the process dynamics,

y
pred
m (k) current feedback measurement, predicted

using neural network,
y*NN(k+ 1) output due to input moves up to the

present time.
111P P×1, vector of ones,
P M≤P≤N−1,
W2 hidden/output weighting factor,
W1W1W1 P×M matrix, lower triangular matrix as

defined in Eq. (52),
B1 hidden layer bias,
B2 output layer bias,
Γ 1 P×P diagonal matrix, tuning parameter,
Λ1 M×M diagonal matrix, tuning

parameter.
DNNC in DMC framework provides the same tuning pa-

rameters as DMC parameters (N, M, P, γ , λ) for controller
design.

Appendix B. Extension of SISO–DNNC to
MIMO–DNNC

For MIMO systems withr — output ands— input system,
a linear DMC dynamic representation is given by,

OOO (k + 1) =OOO∗ (k + 1)+AAA 1UUU (k)+ ddd (k + 1), (B.1)

where
OOO(k+ 1) r dimensional vector of outputs and each

vector withM future prediction for each
output,

AAA r× s block matrix and each block with matrix
of M×N of unit step response coefficient for
the ith time intervals,

1UUU (k) s dimensioned vector and each vector withN
elements of future moves for each manipulated
variables (inputs),

ddd(k) vector of unmodeled factors,
OOO0 initial condition vector.
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with theAAA matrix define as,

AAA =




AAA1,1 AAA1,2 . . . AAA1,s

AAA2,1 AAA2,2 . . . AAA2,s

...
...

...
...

AAAr,1 AAAr,2 . . . AAAr,s


 (B.2)

such thatAij contains all theij coefficient in matricesal ,
l = 1, M (refer toAAA matrix for the DMC model for SISO
case as described in Chapter 2 Ref. [26]).

The following optimization method is used to find theN
future moves1I(k),. . . ,1I(k+ N−1),

Min
1I

[
p∑

i=1

λ2(i)[Y sp(k + i)− Y (k + i)]2

+
M∑

j=1

γ 2(j)[1U(k +M − j)]2


 . (B.3)

The solution of such least-squares problems is given by

1III (k)=
[
AAAT ΓΓΓ T ΓΓΓ AAA+ΛΛΛT ΛΛΛ

]−1
AAAT

ΓΓΓ TΓΓΓ [eee (k + 1)], (B.4)

where

Λ = diag(λ1λ1 . . . λ1λ2λ2 . . . λ2 . . . λsλs . . . λs
|←M→|

)

|

, (B.5)

λs = move suppression parameter,

Γ = diag(γ1γ1 . . . γ1γ2γ2 . . . γ2 . . . γrγr . . . γr
|←P→|

). (B.6)

γ r = output weighing parameter.
By analogy, the DNNC controller equation for the MIMO

case is given by the following equations:

1uuu=
[
W1W1W1T Γ 1TΓ 1W1W1W1+Λ1TΛ1

]−1
W1W1W1T

Γ 1TΓ 1 G(eee), (B.7)

where

W1W1W1=




WWW1,1 WWW1,2 . . . WWW1,s

WWW2,1 WWW2,2 . . . WWW2,s

...
...

...
...

WWWr,1 WWWr,2 . . . WWWr,s


 (B.8)

with

Λ1= diag(λ1λ1 . . . λ1λ2λ2 . . . λ2 . . . λsλs . . . λs
|←M→|

) (B.9)

λs = move suppression parameter,

Γ 1= diag(γ1γ1 . . . γ1γ2γ2 . . . γ2 . . . γrγr . . . γr
|←P→|

) (B.10)

γ r = output weighing parameter, such thatWij contains all
the ij coefficients in matriceswl , l = 1,M (refer to W1 ma-
trix for the DNNC model for SISO case as described in

Chapter 2 of Ref. [26]). The rest of the equations for the
MIMO–DNNC can be derived by analogy and comparing to
MIMO–DMC equations. Details of MIMO–DMC is avail-
able throughout the literature.
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